Transcriptase-Polymerase Chain Reaction Relationships Using Quantitative Reverse Dioxin-responsive Genes: Examination of Dose-Response
نویسندگان
چکیده
The purpose of the present experiments was to examine dose-response relationships for induction of hepatic mRNA following a single administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to rats. The induction of cytochrome P450-1A1 (CYP1A1) mRNA is compared to other "dioxin-responsive" genes including UDP-glucuronosyltransferase I, plasminogen activator inhibitor 2, and transforming growth factor a using a sensitive reverse transcriptase-polymerase chain reaction-based method. Sample-to-sample variability in amplification is a concern in using polymerase chain reaction to quantitate biological responses. However, in the present study recombinant RNA templates were synthesized to use as internal standards in both the reverse transcription and the polymerase chain reaction steps. The induction of CYP1A1 mRNA was extremely sensitive to TCDD treatment with increases observed at doses as low as 1 ng/kg body weight. The induction of CYP1A1 mRNA correlated highly (R 2 > 0.90) with an increase in ethoxyresorufin-o-deethylase activity, a CYPlAl-associated enzyme activity. However, induction of CYP1AI mRNA levels was detected at lower TCDD doses than was ethoxyresorufin-o-deethylase activity, reflecting the greater sensitivity of the reverse transcription-polymerase chain reaction approach to detect transcriptional activation of the CYP1A1 gene. UDP-glucuronosyltransferase I mRNA was increased over control (5-fold) but required 1000-times higher TCDD doses (1/zg/kg) to result in a significant increase than did CYP1A1. Plasminogen activator inhibitor 2 and transforming growth factor a mRNA, both previously shown to be induced by TCDD in human keratinocytes, were not increased in rat liver. Hence, these studies reaffirm that TCDD acts through classical receptor mechanisms with gene-to-gene differences in responsiveness. The reverse transcription-polymerase chain reaction method developed to measure mRNA for dioxin-reponsive genes in rat liver will allow for measuring multigene and tissue responses to TCDD and other xenobiotics with high sensitivity, reproducibility, and adaptability and should increase our understanding of various doseresponse relationships.
منابع مشابه
Dioxin-responsive genes: examination of dose-response relationships using quantitative reverse transcriptase-polymerase chain reaction.
The purpose of the present experiments was to examine dose-response relationships for induction of hepatic mRNA following a single administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to rats. The induction of cytochrome P450-1A1 (CYP1A1) mRNA is compared to other "dioxin-responsive" genes including UDP-glucuronosyltransferase I, plasminogen activator inhibitor 2, and transforming growt...
متن کاملMolecular analysis of the S1 gene of vaccine strains of infectious bronchitis virus using reverse transcriptase-polymerase chain reaction and restriction fragment length polymorphism
Infectious bronchitis virus (IBV) is an acute and contagious viral disease of poultry that affects different systems, including the respiratory tract in particular. IBV causes major economic losses in the poultry industry globally. Due to antigenic variation of the causative agent, control of the disease is difficult. To control the disease, many vaccines that belong to different serotypes are...
متن کاملmicroRNAs in adult rodent liver are refractory to dioxin treatment.
Dioxin-like chemicals are well known for their ability to upregulate expression of numerous genes via the AH receptor (AHR). However, recent transcriptomic analyses in several laboratories indicate that dioxin-like chemicals or AHR genotype itself also can downregulate levels of mRNAs encoded by numerous genes. The mechanism responsible for such downregulation is unknown. We hypothesized that m...
متن کاملThe Epstein-Barr virus EBNA2 protein induces a subset of NOTCH target genes in thyroid cancer cell lines but fails to suppress proliferation.
BACKGROUND Epstein-Barr virus is associated with lymphoid and epithelial malignancies and has been reported to infect thyroid cells. The Epstein-Barr virus protein, EBNA2, regulates viral and cellular promoters by binding to RBP-jκ. Similarly, NOTCH1, a tumor suppressor protein in thyroid epithelial cells, competes with EBNA2 for binding to overlapping sites on RBP-jκ. EBNA2 activates a subset ...
متن کامل